A Characterization of Cellular Automata Generated by Idempotents on the Full Shift
نویسنده
چکیده
In this article, we discuss the family of cellular automata generated by so-called idempotent cellular automata (CA G such that G 2 = G) on the full shift. We prove a characterization of products of idempotent CA, and show examples of CA which are not easy to directly decompose into a product of idempotents, but which are trivially seen to satisfy the conditions of the characterization. Our proof uses ideas similar to those used in the well-known Embedding Theorem and Lower Entropy Factor Theorem in symbolic dynamics. We also consider some natural decidability questions for the class of products of idempotent CA.
منابع مشابه
Presenting a New Efficient QCA Full Adder Based on Suggested MV32 Gate
Quantum-dot Cellular Automata (QCA) technology is a solution for implementation of the nanometer sized circuits and it can be a suitable replacement for CMOS. Similar to CMOS technology, designing the basic computational element such as adder with the QCA technology is regarded as one of the most important issues that extensive researches have been done about it. In this paper, a new eff...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملDesign of low power random number generators for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are a promising nanotechnology to implement digital circuits at the nanoscale. Devices based on QCA have the advantages of faster speed, lower power consumption, and greatly reduced sizes. In this paper, we are presented the circuits, which generate random numbers in QCA. Random numbers have many uses in science, art, statistics, cryptography, gaming, gambli...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کاملA fast wallace-based parallel multiplier in quantum-dot cellular automata
Physical limitations of Complementary Metal-Oxide-Semiconductors (CMOS) technology at nanoscale and high cost of lithography have provided the platform for creating Quantum-dot Cellular Automata (QCA)-based hardware. The QCA is a new technology that promises smaller, cheaper and faster electronic circuits, and has been regarded as an effective solution for scalability problems in CMOS technolog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012